Event Handling
Java 7

Waterford Institute of Technology

September 25, 2014

John Fitzgerald

Waterford Institute of Technology, Event Handling Java 7 1/24



Inheritance

Inheritance v Interface

= [nheritance rather than
interfaces?

= Complexity: simpler to
use interfaces

= Class can inherit only
from one class

= Class can implement
many interfaces

Inheritance
4 N

Shape

i

Triangle

g Allowed J

Shape Product

"\\\\\ //,,//'

Triangle

g Not Allowed J

Waterford Institute of Technology,

Event Handling Java 7 2/24



Inheritance

Inheritance v Interface

= Class may implement several
interfaces?

= Class Triangle must
implement all methods in
interfaces Drawable and
Measurable

= Rules to determine which
method to implement in
case of name clashes

Interfaces

Drawable

Measurable

‘\/

Triangle

Allowed

Waterford Institute of Technology,

Event Handling Java 7

3/24



Java interface
A subset

interface is a Java type that may
contain only

= Method signatures

= Constant declarations
Note that

= jnterface defines interfaces

= class defines classes

= Methods implemented in
class that implements
interface

Waterford Institute of Technology,

public interface Drawable

{
public void draw();
public void scale(int %, int y);

access modifier public optional

Event Handling Java 7



Java interface

Compare with class

Java interface different from class
= interface specifies behaviour only
= Cannot create objects of an interface
= Create objects of classes that implement interfaces

public class Tree implements Drawable

{

public void draw() {

}
}

Tree tree = new Tree();
tree.draw();

Waterford Institute of Technology, Event Handling Java 7 5/24



Java interface

Implementation

A class may:
= Provide additional methods unrelated to interface
= |s obliged to implement all methods in interface

= May, optionally, provide @Override annotation to implemented
methods

public class Triangle implements Drawable
{
@Override
public void draw() {...}//must implement draw
@Override
public void scale(int x, int y) {...}//must implement scale
public int getArea(){...}//may include additional methods

Waterford Institute of Technology, Event Handling Java 7 6/24



Java interface

Implementation
Many classes may implement particular interface
= Class states that it implements particular interface

public class Triangle implements Drawable {. .. }

= Class provides suitable implementation of interface methods

public class Triangle implements Drawable
{
@0verride
public void draw() {...}
}
public class House implements Drawable
{
@0verride
public void draw() {...}
}

Waterford Institute of Technology, Event Handling Java 7 7/24



Java interface
Application

Object of class implementing interface may be stored in variable
whose type is the interface

= Tree implements Drawable

= Tree object reference can be stored in Drawable variable

= Facilitates unifying behaviour

Drawable element = new Tree(...); /*legalx/

//create array of Drawable variables
Drawable[] elements = new Drawable[2];
//Assign different objects to elements in array
Drawable elements[0] = new House(...);
Drawable elements[l] = new Triangle(...);

Waterford Institute of Technology, Event Handling Java 7

8/24



Java interface
What you cannot do

= |llegal to attempt instantiation of interface.

/*This is allowedx/

Drawable element = new Tree(...);
/*This is not allowedx*/

Drawable element = new Drawable();

Waterford Institute of Technology, Event Handling Java 7 9/24



Java interface

Polymorphism

= Here element a reference to Drawable variable
= No way to know what class type referenced
= Only know object has method draw()

Array<Drawable> elements;//elements contains Houses, Trees, Triangles,...
Drawable element = elements.get(i);//specific member of elements index i

Object of unknown class

element o

holds reference to object of unknown class

Waterford Institute of Technology, Event Handling Java 7 10/24



Methods

Synchronous Processing

When client invokes method:
= Execution proceeds only when method returns

= Referred to as synchronous processing

public static void main(String[] args)
{
int 1imit = 500;
int val = 0;
do {
textview.doWork();
val +=1;
} while (val < limit);

Waterford Institute of Technology, Event Handling Java 7 11/24



Methods

Example asynchronous Processing

When client invokes method:
= Invoked method kicks off task ...
= ...and immediately returns
= Client continues doing other things

= When task complete client somehow advised

Referred to as asynchronous processing

Waterford Institute of Technology, Event Handling Java 7 12/24



Listener

Standalone method

Create a simple interface TextWatcher

public interface TextWatcher

{

void onTextChanged(String changedtext);

}

Waterford Institute of Technology, Event Handling Java 7 13/24



Listener

Standalone method

Create a class Callback that implements the interface

public class Callback implements TextWatcher
{
@0verride
public void onTextChanged(String changedtext)
{ System.out.println(changedtext);
}
}

Waterford Institute of Technology, Event Handling Java 7 14/24



Listener

Standalone method

TextView: Register the listener TextWatcher

public class TextView

{

private TextWatcher textwatcher;
public void addTextChangedListener(TextWatcher textwatcher)

// Save textwatcher for later use.
this.textwatcher = textwatcher;

}

Waterford Institute of Technology, Event Handling Java 7 15/24



Listener

Standalone method

TextView: set predicate & do work

public class TextView

{

private boolean somethingHappened;

// Invoking with flag == true sets scene for a callback
public void setPredicate(boolean flag) {
somethingHappened = flag;

// This method will be invoked repeatedly in an event loop
public void doWork() {
if (somethingHappened) { // Check the predicate, set elsewhere.
// Handle the event by invoking the interface's method.
textwatcher.onTextChanged("Finally — you called back");
somethingHappened = false;//reset predicate

}
}
}

Waterford Institute of Technology, Event Handling Java 7 16/24



Listener

Standalone method

EventLoop class: main method

//Main method

TextWatcher textwatcher = new Callback();
TextView textview = new TextView();
textview.addTextChangedListener(textwatcher);

int val = 0;
// The simulated event loop
do

if (val % 100 == 0)
textview.setPredicate(true); // trigger an event

// invoke repeatedly but trigger event only when predicate true
textview.doWork();
val +=1;

} while (val < 500);// we expect 5 events to be triggered

Waterford Institute of Technology, Event Handling Java 7 17/24



Listener

Standalone method

~textwatcher

Waterford Institute of Technology, Event Handling Java 7 18/24



Listener

Anonymous class method

EventLoop class: main method: no Callback object

TextView textview = new TextView();
// We use an anonymous class instead of the Callback object
textview.addTextChangedListener(new TextWatcher() {
Q@0verride
public void onTextChanged(String changedtext) {
System.out.println(changedtext);

}
1)
int val = 0;
// The simulated event loop
do {

if (val % 100 == 0) {
textview.setPredicate(true); // trigger an event

// invoke repeatedly but trigger event only when predicate true
textview.doWork();
val +=1;

} while (val < 500);// we expect 5 events to be triggered

Waterford Institute of Technology, Event Handling Java 7 19/24



Listener

Anonymous class method

= Note signature of onTextChanged
= onTextChangedListener(TextWatcher)
= But this is how we invoke:
= textView.onTextChangedListener(new TextWatcher(){. . .});

= Not very intuitive: seems to suggest interface being
instantiated.

Waterford Institute of Technology, Event Handling Java 7 20/24



Listener

Anonymous class method

—textwarcher

Waterford Institute of Technology, Event Handling Java 7 21/24



Listener
Delegate method
EventLoop class: main method: not using anonymous class
= Class EventLoop implements TextWatcher

= Use EventlLoop this as addTextChangedListener argument

public class EventLoop implements TextWatcher

{

public void runloop()

{

TextView textview = new TextView();

// EventLoop implements TextWatcher

// Consequently "this" a legal parameter here
textview.addTextChangedListener(this);
//Simulate event loop

=

Waterford Institute of Technology, Event Handling Java 7 22/24



Listener
Delegate method

EventLoop class: main method: not using anonymous class

= |Implement interface TextWatcher method in EventLoop

public class EventLoop implements TextWatcher

{

public void runloop() {...}

@0verride
public void onTextChanged(String changedtext) {
System.out.println(changedtext);

}
public static void main(String|] args)
{
EventLoop obj = new EventLoop();
obj.runloop();

Waterford Institute of Technology, Event Handling Java 7 23/24



Listener
Delegate method

~textwatcher

Waterford Institute of Technology, Event Handling Java 7 24/24



