
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology
http://www.wit.ie

http://elearning.wit.ie

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

mailto:edleastar@wit.ie

Activities

Activities	

• Purpose of an Activity

• Activity Stack

• Activity Lifecycle

• Creating an Activity

• Specifying the UI

• Manifest

• Starting Activities

Activities

• An application component that
provides a screen with which
users can interact in order to do
something

• Each activity is given a window in
which to draw its user interface.

• The window typically fills the
screen.

The Activity Stack

• When an activity starts, the previous activity is stopped,
but the system preserves the activity in a stack (the "back
stack"). .

• The back stack abides to the basic "last in, first out" stack
mechanism, - when Back button pressed, it is popped
from the stack that previous activity resumes.

• An application consists of
multiple activities loosely bound
to each other.

• One activity in an application is
specified as the "main" activity,
presented on first launch

• Each activity can then start
another activity to perform
different actions.

Activity Lifecycle

• When an activity is stopped it is notified of this change in state
through the activity's lifecycle callback methods:

• Create,

• Stop

• Resume

• Destroy

• These callback provide the opportunity to perform specific
work that's appropriate to that state change.

Activity Lifecycle

• When stopped, your activity should
release any large objects, such as
network or database connections.

• When the activity resumes reacquire the
necessary resources and resume
actions that were interrupted.

• These state transitions are all part of the
activity lifecycle.

Creating an Activity
• Create a subclass of Activity and implement

callback methods that the system calls
when the activity transitions between
various states of its lifecycle

• The two primary call-backs to implement
are:

• onCreate() : The system calls this when
creating your activity. Initialize the
essential components of your activity,
usually including a call call
setContentView() to define the layout for
the user interface.

• onPause() : The system calls this
method as the first indication that the
user is leaving your activity (though it
does not always mean the activity is
being destroyed). Commit any changes
that should be persisted beyond the
current user session (because the user
might not come back).

Implementing the UI
• The user interface for an activity is provided

by a hierarchy of views—objects derived from
the View class.

• Each view controls a particular rectangular
space within the activity's window and can
respond to user interaction. They consist of:

• Layouts: views derived from ViewGroup
that provide a unique layout model for its
child views (e.g. linear. grid or relative
layout).

• Widgets: standard views that provide a
visual (and interactive) elements for the
screen, such as a button, text field,
checkbox, or just an image.

XML Layouts
• The most common way to define a

layout using views is with an XML
layout file saved in your application
resources.

• Enables the design of your user
interface separately from the source
code that defines the activity's
behavior.

• Set the layout as the UI for your activity
with setContentView(), passing the
resource ID for the layout.

• Or create new Views in your activity
code and build a view hierarchy by
inserting new Views into a ViewGroup,
then use that layout by passing the
root ViewGroup to setContentView().

Declaring the activity in the manifest

• Declare your activity in
the manifest file in order
for it to be accessible to
the system.

Using intent filters

• An <activity> element can also specify various intent filters
in order to declare how other application components may
activate it.

• The main activity for an will require an intent filter that
declares the activity responds to the "main" action, and
should be placed in the "launcher" category:

• The <action> element specifies that this is the "main"
entry point to the application.

• The <category> element specifies that this activity should
be listed in the system's application launcher (to allow
users to launch this activity).

Implicit Intents

• The Activity can respond to “implicit” intents that are
delivered from other applications

• To do this, define additional intent filters for the activity in
the manifest.

• Include an <intent-filter> that includes an <action>
element and, optionally, a <category> element and/or a
<data> element.

Starting an Activity

• Start another activity by calling startActivity(), passing it an Intent that
describes the activity you want to start.

• The intent specifies either the exact activity you want to start

• Or describes the type of action you want to perform (and the system
selects the appropriate activity for you, which can even be from a
different application).

• An intent can also carry small amounts of data to be used by the
activity that is started.

Implicit Intents
• An app may also want to perform

some action, such as send an email,
text message, or status update,.

• If the application does not have its
own activities to perform such
actions, leverage the activities
provided by other applications on the
device, which have declared (using
intent filers) that can perform the
actions.

• If there are multiple activities that can
handle the intent, then the user can
select which one to use.

• The EXTRA_EMAIL extra added
to the intent is a string array of
email addresses to which the
email should be sent.

• When an email application
responds to this intent, it reads
the string array provided in the
extra and places them in the
"to" field of the email
composition form.

• In this situation, the email
application's activity starts and
when the user is done, your
activity resumes.

Starting an activity for a result

• Sometimes, you might want to receive a result from the
activity that you start.

• In that case, start the activity by calling
startActivityForResult() (instead of startActivity()).

• To then receive the result from the subsequent activity,
implement the onActivityResult() callback method.

• When the subsequent activity is done, it returns a result
in an Intent to your onActivityResult() method.

• The first condition checks whether the request was successful—if it was,
then the resultCode will be RESULT_OK—and whether the request to
which this result is responding is known—in this case, the requestCode
matches the second parameter sent with startActivityForResult().

• From there, the code handles the activity result by querying the data
returned in an Intent

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see http://
creativecommons.org/licenses/by-nc/3.0/

