
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

http://www.wit.ie
http://www.wit.ie
mailto:edeleastar@wit.ie

A First Android Application

Donation App and its Models

Unified Modelling Language (UML)

Good resource: http://creately.com/blog/diagrams/class-diagram-relationships/

http://creately.com/blog/diagrams/class-diagram-relationships/

UML Class Diagrams: Taxonomy

• Class • 3 Relationship Types

• Inheritance

• Association

• Uses

• For Associations - optional
levels of detail:

• Simple

• Navigable

• Roles

• Multiplicity

• Aggregation

Class

public class Donate
{

…
}

Inheritance Relationship (the “is a” relationship)

public class Donate extends AppCompatActivity
{

…
}

AppCompatActivity

Association: Simple

• Association is often called the “has a” relationship.

• No details of relationship specified.

public class Donate extends AppCompatActivity
{

private TextView amountTotal;
…

}

Association: Navigable / Directed

• We can reach the TextView object from Donate, but not vice
versa

public class Donate extends AppCompatActivity
{

private TextView amountTotal;
…

}

Association: Roles

• The association is specifically named - the attribute name in
this example.

public class Donate extends AppCompatActivity
{

private TextView amountTotal;
…

}

UML Association - Multiplicity

• DonationApp can have many Donation objects.

• We deliberately do not show the ArrayList class.

• Focus instead on the one-to-many relationship (cardinality) between
DonationApp and Donation classes.

public class DonationApp extends Application
{
...
public List <Donation> donations = new ArrayList<Donation>();
…

}

UML Association - Aggregation

• The aggregation kind (composited) indicates that the DonationApp
somehow controls the lifespan of the Donation objects.

• DonationApp ‘is composed of’ Donation objects, and is responsible
for creating them and perhaps also destroying them.

public class DonationApp extends Application
{
...
public List <Donation> donations = new ArrayList<Donation>();
…

}

Association Models

• All three models are
valid

• Which one we use
depends on the level
of detail we which to
communicate

• This is a judgement
call, often based on
the level of detail
that is useful in a
given diagram

Uses Relationship

• Indicates that
Donate ‘uses’ a
Menu object.

• However, it will
not retain a
reference to the
Menu object as a
class member.

public class DonationApp extends Application
{

...
@Override
public boolean onCreateOptionsMenu(Menu menu)
{

getMenuInflater().inflate(R.menu.donate, menu);
return true;

} …
}

Donation App - Versions and their Models

• V1 - single activity, no model

• V2 - 2 activities + app + donation model

• V3 - 5 activities + app + user & donation model

Donation V1
– single

activity, no
model

Donation V1 AppCompatActivity
(android::android.app)

Donation V1
– simplified

AppCompatActivity
(android::android.app)

Donation V2 – two activities, app,
donation model.

Donation V2

AppCompatActivity
(android::android.app)

Donation V2 Simplified
AppCompatActivity

(android::android.app)

Donation V3

Donation V3 AppCompatActivity
(android::android.app)

UML Tools

• All diagrams on these
slides were designed
using Visual Paradigm.

• Download the
community edition
(for non-commercial
use only) for free.

https://www.visual-paradigm.com/download/community.jsp

https://www.visual-paradigm.com/download/community.jsp

Questions?

Except where otherwise noted, this content is

licensed under a Creative Commons

Attribution-NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-

nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

