
Produced 
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

http://www.wit.ie
http://www.wit.ie
mailto:edeleastar@wit.ie


The Android Stack



Overview

• The Android 
operating system 
is like a cake 
consisting of 
various layers. 

• Each layer has its 
own 
characteristics 
and purpose—but 
the layers are not 
always cleanly 
separated and 
often seep into 
one another.



Android & Linux

• Although Android is based on linux, it is not just another flavour of 
Linux, in the way that Ubuntu, Fedora, or Red Hat are. 

• Many things you’d expect from a typical Linux distribution aren’t 
available in Android, such as the X11 window manager, the ability to 
add a person as a Linux user or even the glibc standard C library.

• On the other hand, Android adds quite a bit to the Linux kernel, such as 

• an improved power management that is well-suited for mobile 
battery-powered devices, 

• a very fast interprocess communication mechanisms

• mechanisms for sand‐ boxing applications so they are isolated from 
one another.



• Portable

• Most low-level parts of Linux have been written in fairly portable C code, which allows for third 
parties to port Android to a variety of devices.

• Secure

• Linux is a highly secure system, having been tried and tested through some very harsh 
environments over the decades.

• Android relies heavily on Linux for security, and all Android applications run as separate Linux 
processes with permissions set by the Linux system, passing many security concerns to the 
underlying Linux system. 

• The kernel is the sole enforcer of Android permissions, providing a simple, powerful, security 
mechanism. It also allows Android apps access to native code, such as fast C implementations of 
various libraries via the Java Native Interface.

• Features

• The Linux kernel comes with a range of features. Android leverages many of them, e.g. support 
for memory and power management, networking and radio functionality.

Linux Kernel



Native Layer

• The native libraries are C/C++ libraries. Their primary job is to 
support the Android Application Framework layer

• Some of these libraries are purpose-built for the Android OS, 
whereas others are often taken from the open source 
community in order to complete the operating system.



• Binder: A very fast inter-process communication mechanism that allows for one Android app 
to talk to another.

• Framework libraries: Various libraries designed to support system services, such as 
location, media, package installer, telephony, WiFi, voip, and so on.

• Webkit: A fast web-rendering engine used by Safari, Chrome, and other browsers.

• SQLite: A full-featured SQL database that the Android app framework exposes to 
applications.

• Apache Harmony: An open source implementation of Java libraries.

• OpenGL: 3D graphics libraries.

• OpenSSL: The secure socket layer, allowing for secure point-to-point connectivity.



Native Daemons

• Native daemons are executable code that usually runs to support some kind of system 
service. Prominent examples:

• Service Manager (servicemanager): The umbrella process running all other 
framework services. It is the most critical native daemon.

• Radio interface layer daemon (rild): Responsible for supporting the telephony 
functionality via GSP or CDMA, usually.

• Installation daemon (installd): Supports management of apps, including 
installation, upgrades, as well as granting of permissions.

• Media server (mediaserver): Supports camera, audio, and other media services.

• Android Debug Bridge (adbd): Supports developer connectivity from your PC 
to the device (including the emuator) so that you can develop apps for Android.



Application Frameworks

• The application framework is a rich environment that provides numerous libraries and 
services to help the app developer

• This is the best-documented and most extensively covered part of the platform because 
it is this layer that empowers developers to get applications to the market.

• In the application framework layer, there are numerous Java libraries specifically built 
for Android. These purpose-built Android classes live in android.* packages.

• There are also most of the standard Java libraries, such as java.lang.*, java.utils.*, 
java.io.*, java.net.*, etc, which behave as documented in the oracle documentation

• You will also find many services (or managers) that provide the ecosystem of capabilities 
your application can tap into, such as location, sensors, WiFi, telephony, etc…



JVM vs Dalvik

• In Java, you write your Java source file, compile it into Java 
byte code using the Java compiler, and then run this byte 
code on the Java VM. 

• In Android you write the Java source file, and you still compile 
it to Java byte code using the same Java compiler. 

• But at that point, you recompile it once again to Dalvik byte 
code using the Dalvik compiler - producing a DEX file

• It is this Dalvik byte code - DEX Code - that is then executed 
on the Dalvik



Dex



• ART, which stands for Android Runtime, handles app execution in a 
fundamentally different way from Dalvik.

• The big shift that ART brings, is that instead of being a Just-in-Time (JIT) 
compiler, it now compiles application code Ahead-of-Time (AOT). 

• The runtime goes from having to compile from bytecode to native code 
each time you run an application, to having it to do it only once, and any 
subsequent execution from that point forward is done from the existing 
compiled native code.



• ART is compatible with Dalvik’s existing byte-code format (“dex”).

• From a developer’s perspective, there are no changes at all in terms of 
having to write applications for one or the other runtime and no need 
to worry about compatibilities.





Applications

• An application is a single file. We call it an Android 
application package, or APK for short. 

• It is a ZIP file that you can unzip and look inside using any 
archiving tool



Signed APK Generation

• Your APK file also contains a digital 
signature certifying that you are the 
author of this application. Signatures 
are in the META-INF folder.

• Android applications must be signed 
before they can be installed on a 
device.



Components of an APK (1)
• Android Manifest file

• This is the main file that provides the big picture about your app—
all of its components, permissions, version, and minimum API level 
needed to run it.

• Dalvik executable

• This is all your Java source code compiled down to a Dalvik 
executable. The Dalvik executable is the code that runs your 
application. It is located in a file called classes.dex.

• Resources

• Resources are everything that is not code. Your application may 
contain a number of images and audio/video clips, as well as 
numerous XML files describing layouts, language packs, and so on. 
Collectively, these items are the resources.

• Native libraries

• Optionally, your application may include some native code, such as 
C/C++ libraries. These libraries could be packaged together with 
your APK file.



Android Stack

• Which part 
should we 
learn?



Android Stack

• Almost exclusively - the Application Framework

• Learning Resources? (one stop shop next)



developer.android.com

http://developer.android.com


SDK Platforms



SDK Tools



• Latest version of documentation can be 
downloaded locally via the SDK Manager

• Can then be browsed as a static web site



Design





Develop



Develop/Training



Develop/API Guides



Develop/Reference



Develop/tools





Recommended Texts


