
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Mobile Application Development

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

http://www.wit.ie
http://www.wit.ie
mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

Activities

and the Activity Lifecycle

Activities

• Purpose of an Activity

• Activity Stack

• Activity Lifecycle

• Creating an Activity

• Specifying the UI

• Manifest

• Starting Activities

Activities

• An application component that
provides a screen with which users
can interact in order to do
something.

• Each activity is given a window in
which to draw its user interface.

• The window typically fills the
screen.

Activity Stack

• An application consists of multiple activities loosely bound to
each other.

• One activity in an application is specified as the "main" activity,
presented on first launch

• Each activity can then start another activity to perform different
actions.

Activity Stack

• When an activity starts, the previous activity is stopped, but the system preserves
the activity in a stack (the "back stack").

• The back stack abides to the basic "last in, first out" stack mechanism, - when Back
button pressed, it is popped from the stack that previous activity resumes.

Activity Lifecycle

Create a subclass of
AppCompatActivity.

This allows you override
any of the callback
methods that the system
calls when the activity
transitions between
various states of its
lifecycle.

Activity Lifecycle

An Activity has many
callback methods.

• Callback methods are
triggered when an
action to which it is
attached is executed.

• You don’t need to
implement all of them
in each Activity.

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onCreate()

The system calls this when
creating your activity.

Perform basic start-up logic
such as initialising the
essential components of your
activity, usually including a
setContentView() call to
define the layout for the user
interface.

Note: a primary method

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

• Your activity does not
reside in the Created
state

• Once the onCreate()
method is finished
running, it enters Started
state and the system calls
the onStart() method.

Activity Lifecycle

onStart()

This callback is called when
the activity becomes visible
to the user and it prepares
for becoming interactive.

Once this method is finished
running, the Activity doesn’t
stay in Started state
either…it moves to
Resumed state.

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onResume()

This is called when the user
starts interacting with the
application.

The activity stays in the
Resumed state until
something happens to take
focus away e.g. receiving a
phone call, navigating to
another activity, etc.

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onPause()

The system calls this method
as the first indication that the
user is leaving your activity
(though it does not always
mean the activity is being
destroyed) i.e. lost focus.

Pause things such as
animations, music, release
system resources, etc.

Note: a primary method

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onPause()

As onPause() method
execution is very brief, you
shouldn’t save application /
user data, make network
calls, etc…basically don’t
invoke any task whose
execution time could last
longer than the onPause()
method execution time.

Note: a primary method

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onStop()

This callback is invoked
when the activity is no
longer visible e.g. a newly
launched activity covers the
entire screen.

You should release any large
objects (e.g. network or
database connections) that
the user is not using
avoid resource leaks.

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onStop()

Also use this method to
perform CPU intensive
operations such as
persisting data (if you
haven’t done so
previously).

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onDestroy()

This callback is called before
the activity is destroyed by
the system i.e. the final call
that the activity receives.

This method should release
any resources that your
activity still holds.

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Activity Lifecycle

onRestart()

This callback is called when
the activity restarts after
stopping it i.e. when the
activity is being re-displayed
to the user.

Followed by calls to
onStart() and onResume().

https://www.tutorialspoint.com/android/android_acitivities.htm

https://www.tutorialspoint.com/android/android_acitivities.htm

Implementing the UI

• UI for an activity is provided by a hierarchy
of views—objects derived from the View
class.

• Each view controls a particular rectangular
space within the activity's window and can
respond to user interaction. They consist
of:

• Layouts: views derived from ViewGroup
that provide a unique layout model for
its child views (e.g. linear, grid, relative
layout).

• Widgets: standard views that provide
visual (and interactive) elements for the
screen, such as a button, text field,
checkbox, or just an image.

XML Layouts

• The most common way to define a layout
using views is with an XML layout file
saved in your application resources.

• Enables the design of your user interface
separately from the source code that
defines the activity's behavior.

• Set the layout as the UI for your activity
with setContentView(), passing the
resource ID for the layout.

• Or create new Views in your activity code
and build a view hierarchy by inserting
new Views into a ViewGroup, then use
that layout by passing the root
ViewGroup to setContentView().

Declaring the activity in the manifest

• Declare your activity in
the manifest file in order
for it to be accessible to
the system.

Using intent filters

• An <activity> element can also specify various intent filters in
order to declare how other application components may
activate it.

• The main activity for an app will require an <intent-filter> that
declares the activity responds to the "main" action, and
should be placed in the "launcher" category:

Using intent filters

• The <action> “main” element specifies that this can be used
as a top-level entry point to the application i.e. the activity
to start when the app launches.

• The <category> “launcher” element specifies that this
activity should be listed in the system's application launcher.

Starting an Activity

• Start another activity by calling startActivity(), passing it an Intent that
describes the activity you want to start.

• The intent specifies either the exact activity you want to start

• Or describes the type of action you want to perform (and the system
selects the appropriate activity for you, which can even be from a
different application).

• An intent can also carry small amounts of data to be used by the activity
that is started.

Implicit Intents

• The Activity can respond to “implicit” intents that are
delivered from other applications.

• To do this, define additional intent filters for the activity in
the manifest.

• Include an <intent-filter> that has an <action> element and,
optionally, a <category> element and/or a <data> element.

Implicit Intents

• An app may also want to perform some
action, such as send an email, text
message, or status update,.

• If the application does not have its own
activities to perform such actions,
leverage the activities provided by
other applications on the device, which
have declared (using intent filers) that
can perform the actions.

• If there are multiple activities that can
handle the intent, then the user can
select which one to use.

• The EXTRA_EMAIL extra added to
the intent is a string array of email
addresses to which the email
should be sent.

• When an email application
responds to this intent, it reads
the string array provided in the
extra and places them in the "to"
field of the email composition
form.

• In this situation, the email
application's activity starts and
when the user is done, your
activity resumes.

Starting an activity for a result

• Sometimes, you might want to receive a result from the
activity that you start.

• In that case, start the activity by calling
startActivityForResult() (instead of startActivity()).

• To then receive the result from the subsequent activity,
implement the onActivityResult() callback method.

• When the subsequent activity is done, it returns a result in
an Intent to your onActivityResult() method.

Check whether the request was successful—if it was, then the resultCode will
be RESULT_OK—and whether the request to which this result is

responding is known—in this case, the requestCode matches the second
parameter sent with startActivityForResult().

From there, the code handles the activity result by
querying the data returned in an Intent

Questions?

Except where otherwise noted, this content is

licensed under a Creative Commons

Attribution-NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-

nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

