
Produced 
by

Department of Computing & Mathematics
Waterford Institute of Technology
http://www.wit.ie

Mobile Application Development

David Drohan (ddrohan@wit.ie)




Google Maps

Android Google Services"
Part 3



Google Services Overview
❑ Overview of Google Play Services and Setup
❑ Detailed look at

■  Google+ Sign-in and Authentication (Part 1)
■  Location & Geocoding (Part 2)
■  Google Maps (Part 3)



Google Services - Part 3 3!



Google Services Overview

❑ Detailed look at

■  Google Maps (Part 3)


Google Services - Part 3 4!



Agenda
❑ Overview
❑ Installation & Registration of the Google Maps API ‘Key’
❑ Creating interactive Maps with GoogleMaps, 

(Support)MapFragments & FragmentActivitiys
❑ Creating & Adding Markers to Maps
❑ Custom Styling our Maps (Video)


Google Services - Part 3 5!



Overview – What is it?
❑  “A mapping and navigation application for desktop and mobile 

devices from Google. Maps provides turn-by-turn directions to a 
destination along with 2D and 3D satellite views, as well as public 
transit information. Maps also offers photographic views of the turns, 
which show the real streets and surroundings (Google "street 
views").” – www.pcmag.com

❑ Google Maps APIs are available for Android, iOS, web browsers and 
via HTTP web services.

Google Services - Part 3 6!



Overview – Accessing Google Maps

Google Services - Part 3 7!

❑ Google maps can be accessed in two ways
■  Through a browser or a WebView	
■  Through the Google Maps Android API v2

❑ Google Maps Android API v2
■  allows you to incorporate Google Maps into applications
■  is distributed as part of the Google Play Services SDK
■  encapsulates maps in a MapFragment or a SupportMapFragment	

MapFragment and SupportMapFragment essentially!
replace the MapActivity	class used in version 1.!



Overview – Usage *
❑ Using Google Maps Android API v2, you can

■  Add maps to your app
o  3D maps, Terrain maps, Satellite maps.

■  Customize the map
o  Markers, Image Overlays, Polylines/Polygons

■  Control the user’s view
o  Zoom, Pan, Rotate

■  Apply Custom Styles
o  Day/Night view, Custom Colours, Look & Feel.

8!Google Services - Part 3



Aside - Attribution Requirements

9!Google Services - Part 3

If you use the Google Maps Android API in your 
application, you must include the Google Play Services 
attribution text as part of a “Legal Notices” section in your 
application. Including legal notices as an independent 
menu item, or as part of an “About” menu item, is 
recommended.

The attribution text is available by making a call to method	

GooglePlayServicesUtil.getOpenSourceSoftwareLicenseInfo()
and you should probably use a WebView not a TextView!



10!Google Services - Part 3

Part 3!
Google Maps Android API!



Introduction
❑ With the Google Maps Android API, you can add maps based on 

Google Maps data to your application. 
❑  The API automatically handles access to Google Maps servers, 

data downloading, map display, and response to map gestures.
❑  You can also use API calls to add markers, polygons, and overlays 

to a basic map, and to change the user's view of a particular map 
area. 

❑  These objects provide additional information for map locations, and 
allow user interaction with the map. 

11!Google Services - Part 3



Introduction
❑ The API allows you to add these graphics to a map:

■  Icons anchored to specific positions on the map (Markers).
■  Sets of line segments (Polylines).
■  Enclosed segments (Polygons).
■  Bitmap graphics anchored to specific positions on the map 

(Ground Overlays).
■  Sets of images which are displayed on top of the base map 

tiles (Tile Overlays).

12!Google Services - Part 3



Google Maps API Requirements
❑ For integrating Google Maps into your Android Application, you 

need to complete the following :

1.  Enable Google Maps API V2 on The Developers Console and 
create credentials for your application authentication

2.  Configuring Google Play Services in Android Studio
3.  Create your Android Application with Google Maps integration

13!Google Services – Part 3



1. Enable Google Maps API V2 *
① You can take the same approach as we did for enabling the 

Google Sign-In OR you can let Google guide you through 
the process (as follows)"


Visit Get API Key and follow the instructions 

14!Google Services – Part 3



1. Enable Google Maps API V2 *

15!Google Services – Part 3

❑  Your Projects on the 
Developer Console



1. Enable Google 
Maps API V2 *

16!Google Services – Part 3

❑  In AndroidManifest.xml, add the 
following by inserting it just before 
the closing </application>	tag:



2. Configure Google Play Services 
❑ Already Done! (should be, from previous slides…)

17!Google Services – Part 3



3. Create your Android App (CoffeeMate)
❑ You’ll cover this in the Labs, but we’ll have a look at 

some of the setup and code next

18!Google Services – Part 3



Integrating Google Maps into Your Android App

19!Google Services – Part 3

https://developers.google.com/maps/documentation/android-api/!
!https://code.tutsplus.com/series/getting-started-with-google-maps-for-android--cms-891!



1. Setting Up Your Android Project *
❑ First thing to do (after you’ve got your API Key) is to 

open your build.gradle file and confirm/import the Play 
Services library for maps and the locations Play Services 
library in order to set an initial position for your map. 
Place the following lines into the dependencies node of 
the build.gradle file. (version numbers my differ, currently 11)

20!Google Services - Part 3



1. Setting Up Your Android Project *
❑ Next, open your AndroidManifest.xml file. Above 

the <application> node, you need to declare that the 
application uses OpenGL ES 2.0 and define the 
permissions needed by your application.

21!Google Services - Part 3



1. Setting Up Your Android Project *
❑ Then, within the <application>	node, add two pieces of 

metadata. The first informs the application that Play Services 
are used and the second binds the Maps API key with your 
application (@string/google_api_key).

22!Google Services - Part 3



1. Setup - Creating your Map Class
❑ You’ll need to create a new class (your class MapFragment), 

which extends SupportMapFragment		
■  used here rather than com.google.android.gms.maps.MapFragment 

for backwards compatibility before API 12.
And implement the following interfaces (next slide for expl.)

23!Google Services - Part 3

public	class	MapFragment	extends	SupportMapFragment	implements	
GoogleApiClient.ConnectionCallbacks,	

								GoogleApiClient.OnConnectionFailedListener,	
								GoogleMap.OnInfoWindowClickListener,	
								GoogleMap.OnMapLongClickListener,	
								GoogleMap.OnMapClickListener,	
								GoogleMap.OnMarkerClickListener	{	



1. Setup - The Necessary interfaces

24!Google Services - Part 3



1. Setup - Updating the Layout
❑ Once you have the initial fragment built, you need to let your 

MainActivity (or wherever you plan on displaying the map) know that it 
should use this fragment. Open your xml layout from your resources 
folder and change it so that it includes the fragment as a view.

25!Google Services - Part 3

❑  You’ll use your own 
class reference



1. Test the Setup
❑  After updating your activity layout, you 

should be able to run your application 
and view a map of Earth that is fully 
zoomed out and focused on latitude 0, 
longitude 0.

26!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ Returning to our MapFragment class, you need to define some 

global values at the top of the class for use in your application.



❑ Each of the map types serves a different purpose, so one or 

more may be suitable for your own applications.
27!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ GoogleMap.MAP_TYPE_SATELLITE displays a satellite view 

of the area without street names or labels.

28!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ GoogleMap.MAP_TYPE_Normal shows a generic map with 

street names and labels.

29!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ GoogleMap.MAP_TYPE_HYBRID combines satellite and 

normal mode, displaying satellite images "
of an area with all labels.

30!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ GoogleMap.MAP_TYPE_TERRAIN is similar to a normal map, 

but textures are added to display changes "
in elevation in the environment. These "
textures are most visible when the map is "
angled with a two-finger drag.

31!Google Services - Part 3



2. Initializing the Map - Declaring Map Types *
❑ GoogleMap.MAP_TYPE_NONE is similar to a normal map, but 

doesn't display any labels or coloration for"
the type of environment in an area. It does "
allow for displaying traffic and other "
overlays on the map.

32!Google Services - Part 3



2. Initializing the Map – Creating the API Client *
❑ Create your GoogleApiClient and initiate 
LocationServices to get your user's current location. 

33!Google Services - Part 3



❑  The initListeners method binds the interfaces that you declared at 
the top of the class with the GoogleMap object associated with 
SupportMapFragment.



❑ Note: the GoogleApiClient and listeners are created and bound from 
onViewCreated rather than the typical onCreate. The GoogleMap 
object has not been initialized when onCreate is called - need to wait 
until the view is fully created before trying to call getMap in order to avoid 
a NullPointerException. 

2. Initializing the Map – Creating the API Client

34!Google Services - Part 3



Recap - Fragment Lifecycle *

35!Google Services - Part 3

❑ OnViewCreated() is "
called here

❑ Immediately after"
OnCreateView() 



❑ Connect the GoogleApiClient in onStart. 
2. Initializing the Map – Configuring the Map *

36!Google Services - Part 3



❑ Once connected, you can grab the user's most recently 
retrieved location and use that for aiming the map camera.

2. Initializing the Map – Configuring the Map *

37!Google Services - Part 3



❑ Once connected, you can grab the user's most recently 
retrieved location and use that for aiming the map camera.

2. Initializing the Map – Configuring the Map *

38!Google Services - Part 3



❑ One of the most used map features involves indicating locations with 
markers. Since a latitude and longitude are needed for adding a marker, 
use the OnMapClickListener to allow the user to pick a spot on the 
map to place a Marker object.

❑  This method creates a generic red marker where the user has tapped. 

3. Marking Locations *

39!Google Services - Part 3



❑ If you want to avoid using the generic colored pins for your 
location markers, or setting a marker as draggable you can set 
those options via the MarkerOptions object.

3. Marking Locations *

40!Google Services - Part 3



❑ The getAddressFromLatLng method is being used in both 
click methods. This is a helper method that takes a LatLng and 
runs it through a Geocoder to get a street address.

3. Marking Locations *

41!Google Services - Part 3



❑ The previous few slides 
would give us something 
like this on a map

3. Marking Locations

42!Google Services - Part 3



❑ The GoogleMap object has a set of methods that make it easy 
to draw shapes and place images onto the map. 

❑ To draw a simple circle, you only need to create a 
CircleOptions object, set a radius and center location, and 
define the stroke/fill colors and size.

❑ Once you have a CircleOptions object, you can 
call addCircle to draw the defined circle on top of the map.

❑ Just like when placing markers, objects that are drawn on the 
map return an object of the drawn item type so it can be 
referenced later if needed.

4. Drawing on the Map

43!Google Services - Part 3



❑ A drawCircle helper method
4. Drawing on the Map

44!Google Services - Part 3



❑ Video next…
5. Styling your Map

45!Google Services - Part 3



Custom Styling

46!Google Services - Part 3



All Available via Google Play Services

Google Services – Part 3 47!



48!Google Services - Part 1

CoffeeMate 6.0


Code
Highlights



fragment_map layout * (What you’ll do initially in the labs)
❑ Here we declare the 
MapFragment element 
within our layout.

❑ Note the resource id.
❑ Our Map	Activity.

49!Google Services – Part 3



manifest	file *
❑  Setting the necessary 

permissions
❑ Our Google	API	Key

50!Google Services – Part 3



MapsFragment – interfaces/instance variables *
❑  Here we declare the interfaces "

our custom MapFragment 
(MapsFragment) implements.

❑  Interfaces for Volley & Location 
Updates/Callbacks.

❑  Variables to keep track of "
location requests, the map etc.

51!Google Services – Part 3



GoogleApiClient Setup *

❑ Here we build our GoogleApiClient	 specifying the LocationServices 
API.

❑  It’s actually common practice to ‘rebuild’ your api client (can actually 
improve performance)

52!Google Services – Part 3



MapsFragment – onResume() *
❑  Acquire GoogleMap (automatically initializes 

the maps system and the view) 
❑ Get all the coffees to display on map
❑  Zoom in Camera to current location

53!Google Services – Part 3



MapsFragment – onMapReady() *
❑ Bind to our GoogleMap	

instance and set its initial 
type.

❑ Check for the necessary 
permissions & zoom

❑ Request Permissions if not 
already allowed

❑  Set the Map (mMap) properties

54!Google Services – Part 3



MapsFragment – Permissions *

❑ Checking to see if Location & Camera permissions are allowed
❑ Requesting Location & Camera permissions 


55!Google Services – Part 3



MapsFragment – Permissions *
❑ Retrieving permission 

status
❑ Updating the User and 

starting location updates 
on permission granted



56!Google Services – Part 2



MapsFragment – Tracking Location (1) *

❑ Use the FusedLocationClient instance to requestLocationUpdates


57!Google Services – Part 3



MapsFragment – Tracking Location (2) *

❑ Update our current location (mCurrentLocation) and 
initialise/reposition the camera



58!Google Services – Part 3



MapsFragment – Helper Methods *
❑  Adding necessary listeners to 

our GoogleMap	reference.
❑  Position/reposition the 

Camera based on current 
location and set zoom ratio.

59!Google Services – Part 3



MapsFragment – Adding Coffee Markers *
❑  Triggered by our CoffeeApi 

callback
❑  Traversing our list of coffees 

and adding a location marker 
to the map

60!Google Services – Part 3



AddFragment – Adding a single Coffee *
❑  To demonstrate the true value of using Fragments, we embed our 

existing MapsFragment inside our AddFragment (demonstrating even 
another new(ish) feature in Android)

❑ We get all the existing functionality of our custom map, and just need to 
make a few minor changes to our existing AddFragment to allow us to 
store the location of the coffee as we add it.

61!Google Services – Part 3



AddFragment – Helper Methods *
❑ Using the Geocoder	class to 

extract an address from a 
location (for storing with the 
coffee data)

62!Google Services – Part 3



fragment_add *
❑ Modifying our fragment layout 

to include another fragment
❑ Referencing our existing 
MapsFragment fragment



63!Google Services – Part 3



AddFragment – Adding a single Coffee *
❑  Implement our map callback
❑ Create a new coffee using the 

current location, user photo 
url and full address.

❑ Retrieving all our coffees to 
update the map (showing the 
newly added coffee)

64!Google Services – Part 3



AddFragment – Updating the Map *
❑ Our callback for a map 

reference and clearing the 
map

❑  Adding the new list of coffees

65!Google Services – Part 3



CoffeeMate 6.0 *

66!Google Services – Part 3



Summary
❑ Overview
❑ Installation & Registration of the Google Maps API ‘Key’
❑ Creating interactive Maps with GoogleMaps, 

(Support)MapFragments & FragmentActivitiys
❑ Creating & Adding Markers to Maps
❑ Custom Styling our Maps (Video)


Google Services - Part 3 67!



Questions?!

Google Services - Part 3 68!


